Mesenchymal Stem Cells and MSCs-Derived Extracellular Vesicles Immunomodulatory Effects in Systemic Lupus Erythematosus

Mesenchymal Stem Cells and MSCs-Derived Extracellular Vesicles Immunomodulatory Effects in Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a common multisystemic autoimmune disease that often results in multi-organ damage when left untreated. Currently affecting over 1.5 million Americans, the etiology and pathogenesis of SLE continue to remain unclear. 

At present, glucocorticoids and immunosuppressants are the most prescribed course of therapeutic treatment and mostly as a way to manage and treat symptoms of SLE, not the cause itself. 

Considering that the etiology and pathogenesis of SLE are accompanied by immune disorders including abnormal proliferation, differentiation, and activation and dysfunction of T cells, and that mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (EVs) play important roles in the immunity process, researchers are increasingly turning their attention to MSCs and EVs as potential therapeutic treatment options for SLE.  

In this review, Yang et al. examine the immunomodulatory effects and related mechanisms of MSCs and EVs in SLE with hopes of better understanding SLE pathogenesis and guiding biological therapy. 

Examining the potential use of MSC and MSC-EVs in SLE treatment the authors found some studies have established that MSCs reduce adverse effects of immunosuppressive drugs and when combined have demonstrated distinct effects on T cell activation and bias.  

Additionally, Yang et al. report that MSCs are able to participate in the immune response in two distinct ways: paracrine effect and directly through cell-to-cell interaction. Since reconstruction of immune tolerance and tissue regeneration and repair are required parts of SLE treatment and since MSCs possess high self-renewal ability, rapid expansion in vitro and in vitro, and low immunogenicity, allogeneic MSC transplantation has demonstrated strong evidence for the therapeutic potential of MSC in SLE. 

Besides the ability to repair and regenerate tissue, MSCs, and MSC-EVs have strong anti-inflammatory and immunomodulatory effects, making them a potentially ideal treatment option as part of a therapeutic strategy for SLE. Considering that MSC-EVs have similar biological functions with MSCs, but are also considered cell-free, the authors point out that MSC-EVs could be the better choice for SLE treatment in the future.

Despite the potential of MSC and MSC-EVs, Yang et al. point out that genetic modification, metabolic recombination, and other priming of MSCs in vitro should be considered before MSC/MSC-EVs application for SLE treatment. The authors also recommend further clinical evaluation of the time of infusion, appropriate dosage, interval of treatment, and long-term safety of MSC/MSC-EVs in the treatment of SLE before any form of the combination is used as a treatment option.


Source: “Immunomodulatory Effect of MSCs and MSCs-Derived Extracellular ….” 16 Sep. 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481702/.

Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials.

Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials.

Human Mesenchymal Stem Cells (hMSCs) are the non-hematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineages such as osteocytes, adipocytes, and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes).  

Until recently, when the immunomodulation properties of MSCs were proven to be clinically relevant, the use of these stem cells was met with skepticism and doubt by a large portion of the scientific community.  

However, since that time, MSCs have demonstrated tremendous potential for allogeneic use in a number of applications, including cell replacement, and tissue regeneration, and for use in the therapeutic treatment of immune- and inflammation-mediated diseases. In fact, in many cases, the use of MSCs has been so successful that they appear to demonstrate more efficacy than what has been observed previously in traditional regenerative medicine.

Among the many benefits making MSCs so interesting for this application is their capacity for both multilineage differentiation and immunomodulation. Obtaining a better understanding of these capacities has opened new doors in regenerative medicine and demonstrated that these somatic progenitor cells are highly versatile for a wide range of therapeutic applications. 

Additionally, the authors of this review point to research indicating the capacity of MSCs to home to the site of injury and/or inflammation, making them more attractive for use in clinical application. In this review, Wang et al. focus on this non-traditional clinical use of tissue-specific stem cells and highlight important findings and trends in this exciting area of stem cell therapy.

At the time this review was published, there were over 500 MSCs-related studies registered with the NIH Clinical Trial Database. Interestingly, nearly half of these trials involve attempts to better understand the use of MSCs in treating immune- and inflammation-mediated diseases – an indication of the recent shift in focus when determining effective therapeutic applications of MSCs.

In reviewing these clinical trials, Wang et al. found that the most common immune-/inflammation-mediated indications in MSC clinical trials were for graft-versus-host disease (GVHD), osteoarthritis (OA), obstructive airway disease, multiple sclerosis (MS), and solid organ transplant rejection.

Clinical trials involving MSCs, and specifically HSCs, in GVHD have indicated that while there may be indications of immunosuppressant therapy, immune rejection in the form of GVHD is still a major cause of morbidity and mortality, occurring in 30 ~ 40 % of allogeneic HSC transplantations.

Despite a number of clinical trials indicating significant efficacy in the use of MSCs for GVHD treatment, the authors point out that these findings were not observed consistently throughout all trials. Significant differences in these studies appeared to be related to differences in adult and pediatric applications, a specific type of HSC that was transplanted, and the type of MSCs that were utilized. There also appears to be a disparity in the results obtained from similar studies conducted in Europe and North America. Considering this, there are a number of studies involving MSCs and GVHD still ongoing. 

These findings led the authors to conclude that despite the strong potential of MSCs as therapeutic agents for GVHD, detailed tailoring of the patient population and stringent MSC processing criteria are necessary to deliver consistent and reproducible results.

Despite the mixed findings for use of MSCs in the treatment of GVHD, trials reviewed for other immune/inflammation-mediated diseases, including MS, inflammatory bowel disease, OA, RA, and inflammatory airway and pulmonary diseases demonstrated positive results pertaining to the safety of MSC therapy when used in this application. 

Specifically, Wang et al. point out that although there have been positive results observed in preclinical animal studies, these results have not translated to clinical efficacy. In considering this, the authors suggest a focus on better clarifying pathophysiological details and subsets within disease entities to better tailor MSC therapy and standardization of in vitro culture protocols with stringent criteria for testing of functional parameters as two important steps to improve our understanding on the mechanistic properties of MSC immunomodulation.

Despite these recommendations, the authors conclude that the current results and developments of these clinical trials demonstrate that the tremendous potential of MSC therapy in a wide range of areas, including the treatment of immune/inflammation-mediated diseases, can be expected in the near future to achieve clinical relevance.
Source: “Human mesenchymal stem cells (MSCs) for treatment towards ….” 4 Nov. 2016, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095977/.

Bone Marrow-Derived MSCs to Reduce Neural Damage and Prevent Multiple System Atrophy

Bone Marrow-Derived MSCs to Reduce Neural Damage and Prevent Multiple System Atrophy

Multiple system atrophy (MSA) is a rare, degenerative adult-onset neurological disorder that affects your body’s involuntary functions, including blood pressure, breathing, bladder function, and motor control. MSA also demonstrates several symptoms similar to those accompanying Parkinson’s disease, including slow movement, stiff muscles, and loss of balance[1].

Considering the rapid and fatal progression of MSA, there are not currently any long-term drug treatments known to produce therapeutic benefits against the condition. The typical neuropathological hallmarks of MSA are bone marrow destruction and cell loss in the striatonigral region of the brain that results in dopamine deficiency significant enough to result in behavioral abnormalities. 

Since mesenchymal stem cells (MSCs) have demonstrated the ability to self-renew and differentiate within a wide variety of tissues, Park et al., in this study, aimed to assess whether the transplantation of human-derived MSCs could have beneficial effects in a double-toxin-induced MSA rat model. Additionally, the authors assessed the signaling-based mechanisms underlying the neuroprotective effects of MSCs.

Specifically, as part of this study, Park et al. studied the effects of MSCs in 60 rats randomly allocated to one of six groups – a control group, a double-toxin group, two groups receiving MSC intra-arterial (IA) injections, and two groups receiving MSC transplantation via intrathecal (IT) injection after double-toxin induction.

After receiving treatment each group of rats underwent a variety of tests, including the Rotarod test, gait test, and grip strength test. Additionally, the brain tissue of the rats was collected, preserved, and evaluated to assess notable differences.

At the conclusion of this study, the authors found clear evidence of the protective effects of MSCs on double-toxin-induced MSA. The study also demonstrated that transplantation of MSCs prevented neuronal cell death and improved behavioral disorders caused by double-toxin-induced MSA, specifically by reducing dopaminergic neurodegeneration and neuroinflammation.

Additionally, Park et al.’s study demonstrated a higher expression of polyamine modulating factor-binding protein 1 and a lower expression of 3-hydroxymethyl-3-methylglutaryl-COA lyase (HMGCL) after MSC transplantation. 

Park et al. also point out that further investigation is required to better understand the exact mechanism of neuron-specific knockdown in vivo animal and clinical trials.

The authors of this study conclude that treating MSA with bone-marrow-derived MSCs protects against neuronal loss by reducing polyamine- and cholesterol-induced neural damage and may represent a promising new therapeutic treatment option for MSA.

Source: “Prevention of multiple system atrophy using human bone marrow ….” 11 Jan. 2020, https://stemcellres.biomedcentral.com/track/pdf/10.1186/s13287-020-01590-1.pdf.


[1] “Multiple system atrophy (MSA) – Symptoms and causes – Mayo Clinic.” 21 May. 2020, https://www.mayoclinic.org/diseases-conditions/multiple-system-atrophy/symptoms-causes/syc-20356153. Accessed 4 Apr. 2022.

Stem Cells For Autoimmune Diseases: MSCs

Stem Cells For Autoimmune Diseases: MSCs

For decades, autoimmune diseases such as Lupus, Rheumatoid Arthritis, and chronic obstructive pulmonary disease (COPD) have posed a major challenge to researchers and healthcare providers. While medical interventions have evolved tremendously in the last few decades, these serious conditions remain notoriously difficult to treat. Here we talk about Stem Cell for Autoimmune Diseases, Specifically Mesenchymal stem cells!

Fortunately, mesenchymal stem cells may be a potentially effective treatment option for many patients suffering from various autoimmune conditions. While the efficacy of this intervention varies depending on unique patient factors, individuals who have had little to no success with traditional interventions may find it useful to consider MSC therapy.

What Are MSCs?

Mesenchymal stem cells are a special type of cell that can transform into other types of cells. MSCs can become specialized cells such as those that form muscular tissue, cartilage, and many others. MSCs can be harvested from many different locations, including bone marrow, adipose (fat) tissue, and the Wharton’s Jelly within umbilical cords.

Once harvested, MSCs can be administered to help manage various conditions and their symptoms. MSCs are typically administered through a systemic application into the blood system. However, they can also be directly administered to have a more targeted impact on a specific area depending on the patient’s case.

Can MSCs Be Used to Treat Autoimmune Diseases?

While MSCs are still being studied, research has indicated that MSCs can be an effective intervention for many different autoimmune conditions, including COPD

Specifically, mesenchymal stem cells have been effective at treating chronic inflammation, which is a common symptom in many autoimmune patients.

However, every case and patient is unique. Therefore, treatment decisions should be made with the guidance of a licensed medical professional. An experienced care provider can thoroughly review your medical history and condition to help you select the best treatment plan for your needs.

Potential Benefits of Stem Cell for Autoimmune Diseases MSCs

Mesenchymal stem cells have the unique potential to reduce inflammation in individuals suffering from an autoimmune disease, such as Lupus or Rheumatoid Arthritis. There is a correlation between a reduction in inflammation and improvements in other disease symptoms. However, the strength of this correlation is still being researched.

With that being said, MSCs may reduce the severity of many common autoimmune symptoms, including pain and fatigue.

Although research is still in progress, mesenchymal stem cell therapy has shown promise for patients looking for an alternative option. With new advancements in medical tools and therapeutic methodologies, patients who suffer from autoimmune disorders may soon have more options for relief than ever before. If you are interested in learning more about Stem Cell for Autoimmune Diseases, contact us today and speak with a care coordinator!

Phase 1 Clinical Trial Investigating the Use of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Traumatic Spinal Cord Injury

Phase 1 Clinical Trial Investigating the Use of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Traumatic Spinal Cord Injury

With more than 17,000 people in the US sustaining a spinal cord injury (SCI) each year and an estimated combined cost to healthcare and the workforce exceeding $40 billion, the condition has significant personal and socioeconomic implications. In addition, SCIs have limited pharmacological treatment options to support the regeneration of nerve damage.

Considering the limited treatment options for this condition, the field of regenerative medicine, and specifically the use of stem cells, has recently drawn interest as a potential therapeutic treatment option for paralysis resulting from SCIs.

In this report, Bydon et al. summarize findings of the ongoing multidisciplinary phase 1 clinical trial exploring the safety and efficacy of intrathecal autologous adipose tissue-derived (AD) mesenchymal stem cells (MSCs) in patients with blunt, traumatic SCI.

Specifically, as part of this report, the authors describe the outcome of the first patient with C3-4 SCI treated with AD-MSCs. At the time of SCI, neurologic examination revealed complete loss of motor and sensory function below the level of injury; an injury diagnosed as an American Spinal Injury Association (ASIA) grade A SCI. 

After undergoing initial treatment, including C2-6 posterior cervical decompression and fusion, improvement in motor and sensory function was demonstrable. However, neurological gains plateaued 6 months after sustaining injury.

Upon enrollment into the CELLTOP clinical trial 9 months after injury, the patient’s neurologic status was found to be ASIA grade C and imaging revealed bilateral myelomalacia at the C3 level and at the C2-6 decompression and fusion. Additionally, an open biopsy of adipose tissue found in the abdominal wall was performed 8 weeks prior to receiving an initial intrathecal injection. 

After receiving an intrathecal injection of 100 million autologous AD-MSCs 11 months after injury, the patient was observed for clinical signs of efficacy at 3, 6, 12, and 18 months following injection.

Bydon et al. observed progressive improvement in upper extremity motor scores and considerable improvement in lower extremity scores at 18 months following injection. The patient also demonstrated consistent improvement in ASIA sensory score, including improvements in pinprick and light touch scores at follow-up after 18 months. The authors reported patient improvements in Capabilities of Upper Extremity score, quality of life (as measured by Global Health Score), and in physical and occupational therapy measures. Other than a moderate headache on day 2, no other safety issues or adverse events were reported. 

While further clinical trial is required, the authors conclude that intrathecal AD-MSC administration may be a relatively noninvasive and safe therapeutic option for patients with SCI to improve their neurologic status after reaching a ceiling effect in terms of spontaneous recovery.

Source: “First Report From a Phase 1 Trial of Autologous Adipose Tissue ….” 27 Nov. 2019, https://www.mayoclinicproceedings.org/article/S0025-6196(19)30871-7/fulltext

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!